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Fluctuations far from equilibrium: Hyperbolic transport
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The problem of the statistical properties of fluctuations in systems far from equilibrium is addressed. The
discussion is based on a variational approach to hyperbolic transport equations built in a space spanned by the
usual thermodynamic properties plus a set of potential functions associated with them. The enlarged space
characterizes the far from equilibrium states of the system and fluctuations in the potential functions satisfy the
Chapman-Kolmogorov equation. Well known results on processes near equilibrium are recovered in the para-
bolic transport limit.@S1063-651X~97!05004-6#
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I. INTRODUCTION

Nowadays it is recognized that fluctuations may have
organizing role in nonequilibrium systems as, for instance
pattern formation, coherence, self-organizing, etc. T
schemes developed to study equilibrium or near equilibri
systems have the implicit idea that fluctuations constitute
a noise around the equilibrium state and that in any case
break down the order if they are augmented. The view
assume here is that fluctuations are responsible not only
order, but we consider that fluctuations are the mechan
through which systems transit to ordered states where
final state depends on the initial one and on the dynamic
fluctuations@1#.

The description of irreversible processes based on
fluctuations of the thermodynamic properties in a me
scopic level dates back to Onsager and Machlup@2#, who
established the connection between these two levels of
scription for aged systems. These are described in terms
set of extensive properties with the fluxes taken as the t
derivatives of the extensive properties. The formulation
Onsager and Machlup to variational expressions for the t
sition probability among states whose extremum value is
corresponding maximum probability for the average therm
dynamic path of the system. They also derived an expres
for the probability for one state which coincides with Ei
stein’s formula for the probability of equilibrium thermody
namic states based on Boltzmann’s relation. The statis
properties of the stochastic process associated with fluc
tions were completely specified in this way. The scheme
troduced by Onsager and Machlup gave as a result the
pressions of the transition probabilities in terms of an act
functional for the system, with extremum properties wh
the system is changing through thermodynamic states
equilibrium. Grabert and Green@3# extended the formalism
to the case of transport coefficients depending on the ex
sive thermodynamic properties by using a variational pr
ciple for the phenomenological equations. These auth
showed that fluctuations in nonlinear systems constitut
Markov process when the phenomenological coefficients
pend on the thermodynamic state. Furthermore, their w
provided a consistent stochastic interpretation of the te
551063-651X/97/55~5!/5033~11!/$10.00
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appearing in the extremum conditions of the variational pr
ciple and made it possible to discuss some relevant statis
properties of fluctuations. Grabert and Green showed
fluctuations in nonlinear systems constitute a Markov p
cess when the phenomenological coefficients depend on
thermodynamic state. Independently, Graham@4# worked out
the irreversible processes making use of the method of p
integrals in a more mathematical fashion.

Let us remark that the Grabert-Green procedure implie
fact the introduction of an additive stochastic term in t
dynamic equations of the system. The physical interpreta
of such a term is made in two senses. On the one hand,
understood as a stochastic thermodynamic force, and on
other, such a force is the momentum in the space of co
gated variables of the system. Once the stochastic modi
tion of the dynamic equations has been made it only rema
to find the variational expressions for the transition proba
ity in terms of the Lagrangian function of the variation
principle whose stationary conditions are the modified d
namic equations and the time evolution equation of the c
jugated momenta.

In this paper we search for the statistical properties
fluctuations in systems far from equilibrium. Followin
Grabert and Green, we would first ask if a variational a
proach exists for the time evolution equations of the syste
This is not a trivial problem because of the presence in
equations of non-self-adjoint differential operators which
not permit the construction of classical variational princip
for them @5,6#. Our first step is then to find a theoretic
framework which allows us, on the one hand, to construc
classical variational formulation circumventing the proble
of the presence of non-self-adjoint differential operators
the time evolution equations, and on the other, to deal w
systems evolving far from equilibrium for time scales com
parable to the characteristic relaxation time. Next we wo
attempt to construct a path integral scheme for far from eq
librium transport process within such a framework by taki
advantage of the variational structure of the theory.

Hyperbolic transport equations~derived from first prin-
ciples by Nettleton@7# and others@8#! have been shown to b
a useful tool in the fields of generalized hydrodynamics@9#,
solid state physics@10#, and irreversible thermodynamic
5033 © 1997 The American Physical Society
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5034 55F. VÁZQUEZ, J. A. del RI´O, AND M. LÓPEZ de HARO
@11,12#. They describe systems beyond the domain of
linear approach of irreversible processes, specifically fo
time scale of the order of the relaxation time of the syste
The main result of the model is the prediction of a fin
velocity for the perturbations giving a description which i
cludes thermal inertial effects. Apart from these merits,
perbolic transport equations are known to also present l
tations@13,14#. Nevertheless, their interest for us arises fro
the fact that it is possible to construct a classical variatio
principle for the dynamic equations of the system in terms
a set of new physical fields, the so-called potential functio
@15#, which together with the thermodynamic properties d
scribes the time evolution of the system for a time scale
the order of the relaxation time. With the introduction of t
potential functions associated to each thermodynamic p
erty, we enlarge the thermodynamic space and throug
variational principle for the new dynamic equations
equivalent description of the system is obtained@16–18#.
Then the variational equations may be reinterpreted as
conditions which give the average path in the conjuga
variables space constituted by the potential functions and
thermodynamic properties which have the role of the con
gated momenta. Thus it should be possible to constru
probability field for the thermodynamic transitions and o
tain the statistical properties of the fluctuations of the con
gated variables without the introduction of any stochas
term in the transport equations.

We start in Sec. II by establishing the basic equations
hyperbolic transport as derived from the combination of a
of balance and constitutive equations of the Maxwe
Cattaneo-Vernotte type. We proceed then to represent
these equations and the ones arising in parabolic trans
~the usual domain of linear irreversible thermodynami!
@19# in a joint variational scheme. Among other results,
show that a unique Lagrangian function, written in terms
the potentials associated with the thermodynamic prope
of the system, yields the transport equations as the Eu
Lagrange equations of a Hamilton type variational princip
The next section is then devoted to discussing some asp
of the thermodynamics of hyperbolic transport particula
where, as we will see, the existence of Onsager’s recipro
relations between the transport coefficients is supported f
two different points of view. Our scope at this point will b
the use of the variational formulation to establish a me
scopic approach to far from equilibrium transport pheno
ena. The use of the hyperbolic model for the transport p
nomena permits us to extend the study of fluctuations bey
the conditions of local equilibrium. The paper is closed
Sec. V with some comments and final remarks.

II. THE VARIATIONAL APPROACH
TO FAR FROM EQUILIBRIUM
TRANSPORT EQUATIONS

From a macroscopic point of view, hyperbolic transp
equations are obtained by combining a set of balance e
tions for the thermodynamic densities of the system w
Maxwell-Cattaneo-Vernotte equations for the associa
fluxes. The hyperbolic equations we consider here may
written as
e
a
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G j ,tt1
1

t j
G j ,t5(

i

L j i

t j
nG i , ~1!

where theG j ( j51, . . . ,r ) are a set of thermodynamic prop
erties of the system,t j is the relaxation time associated to th
respective fluxJj , L ji are the transport coefficients consi
ered here as constants,n is the Laplace operator, and
comma denotes partial differentiation.

Mention must be made of some differences between
~1! with respect to equations of the hyperbolic transp
problem set up by Nyı´ri @17# ~Eq. 44, p. 50!,

(
k

~a ikGk,tt1b ikGk,t2g iknGk!50,

where we can observe the coupling between the time cha
of the thermodynamic properties which arises from add
all the first and second time derivatives of theG i fields on the
left hand side of the last equation. In our hyperbolic sche
we havea ik5tkd ik, b ik5d ik , andg ik5Lik ~with d ik being
the Kronecker delta!, as may be seen if we start with th
Maxwell-Cattaneo-Vernotte equations for the fluxes

2t j
]Jj
]t

5Jj1(
i
L j i“G i , ~2!

and combine Eqs.~2! with free source balance equations
the form

]G j

]t
52“•Jj . ~3!

Clearly, from Eqs.~2! and ~3! we arrive directly at Eq.
~1!. We proceed now to expose in some detail the variatio
scheme for Eq.~1! in order to use it later in the study of th
statistics of fluctuations.

The first attempts at the classical variational formulatio
for irreversible thermodynamics may be found in the exte
sions of Hamilton’s principle to nondissipative fluids, whe
the internal energy is added to the Lagrangian function. T
mass conservation and the condition of reversibility are
troduced as subsidiary conditions in the variational princip
These schemes have the energy and momentum equatio
the stationary conditions@20#.

The inclusion of dissipative effects in the variational fo
mulation depends on the assumed thermodynamic fra
work @19,21#. There is, however, a common feature in all
these schemes. The initial thermodynamic space is enla
to include new independent properties of the system. As
amples we mention the already exposed cases of
Onsager-Machlup and Grabert-Green variational formulat
for near equilibrium systems as well as the Lagrangian f
mulation of equations for the same kind of systems w
second-order time derivatives originally done by Landau a
Lifshitz @22#. Noteworthy in this last formulation are th
facts that it can also be cast in Hamiltonian form and, wha
more relevant to the contents of this paper, that Onsa
reciprocity and Lagrangian formulation are intimately r
lated. We will come back to this point later on. The mo
general classical variational principle for nonequilibriu
thermodynamics@23# considers the thermohydrodynam
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55 5035FLUCTUATIONS FAR FROM EQUILIBRIUM: . . .
space enlarged with the entropy flux. In this case, the s
sidiary condition is the mass conservation and the formal
permits one to make use of No¨ether’s theorem@24# to obtain
the conservation equations of the system. In this scheme
closing equations are obtained from an analysis of the
tropy production term. Within extended irreversible therm
dynamics it has been shown that the time evolution equat
have a Hamiltonian structure@25#. Grmela and co-workers
@26# defined a Poisson bracket to express the dynamic e
tions in the form of a general time equation in which t
movement generator is a free energy. It has also been sh
that the closing time equations for the nonconserved v
ables may be obtained as the stationary conditions of a va
tional principle of the restricted type@27#. Mention must be
made, however, that this kind of principle loses the ext
mum property of the functional in the enlarged thermod
namic space, which disqualifies it for use in the descript
of fluctuations.

The main ideas we use in this section on the poten
functions method to find classical variational principles
non-self-adjoint differential equations may be found in p
vious works@16–18#. The method has its origin in the clas
sical potential theory@28#. In brief, if one considers a differ
ential equation obtained through the subsequent applica
of linear differential operators on the unknown functionu by
means of a finite number of steps

L$u~x!%50, ~4!

with L the resulting linear differential operator, then th
functional

L@u#5E
D
F„L$u~x!%,x…dt ~5!

defined on the domainD is an extremum if the function

Su~«!5L@u~x!1«h~x!# ~6!

is an extremum in«50 for all the admissible functions
h(x).

The necessary condition in order forL@u# to be an extre-
mum becomes

L̃H ]F

]Lu J 50, ~7!

where we have assumed that the variations at the dom
frontier vanish. The operatorL̃ is the adjoint ofL.

The structure of Eq.~7! restricts the type of equations o
the form ~4! which may be obtained through the variation
problem. One may introduce a new functionf related to the
functionu through the operatorQ, as

u5Q$f~x!%, ~8!

in such a way that the equation foru is equivalent to an
equation of the form~7!, which of course may be obtaine
from a variational principle based on the functionf. By
virtue of Eq.~8! the functionf is called the potential ofu.

To specify the operatorQ, let us observe that the varia
tional problem
b-
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L@f#5E
D
F~L̃$f%,x!dt ~9!

has the extremum condition

LH ]F

]L̃f
J 50. ~10!

The first-order equation

]F

]y
5u, ~11!

with y5L̃$f%, yields Eqs.~4! and~10! to be identical. Equa-
tion ~11! is known as the characteristic equation of Eq.~4!
and it determines the dependence of the LagrangianF with
respect to the variabley as well as the relation ofu with
respect to the potentialf.

The method has been applied by Gamba´r and Márkus@18#
to the parabolic transport equations of linear irreversi
thermodynamics. Within the irreversible thermodynam
scheme the parabolic equation can be written as@19#

(
k

~LiknGk2rSik
21Gk,t!50, ~12!

whereGk are a set of intensive thermodynamic properties
the system, the coefficientsSik

21 and Lik are constants, and
,t indicates partial derivation with respect to time. Mentio
must be made that the sign of the first time derivative in E
~12! differs from the sign used by Gamba´r and Márkus,
mainly because we address our effort to describing irrev
ible processes, where the propertiesGk are bounded func-
tions for all time.

As we mentioned, the main difficulty in obtaining a cla
sical variational formalism either for parabolic or hyperbo
transport lies in the presence of non-self-adjoint operat
namely, the first time derivative, in the transport equatio
In order to deal with fluctuations in nonequilibrium situ
tions within a general formalism, let us separate such a fi
order derivative from the self-adjoint part of the transp
equations by defining two differential operators as follow

Di j5H Li jD, parabolic case

Li j
t i

D2d i j
]2

]t2
, hyperbolic case

~13!

and

Ki5H rSi
21 ]

]t
, parabolic case

1

t i

]

]t
, hyperbolic case.

~14!

Clearly, the transport equations given by Eqs.~1! and~12!
can be rewritten by using these operators in the form

~Di j2Ki !G50. ~15!
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Note thatDi j andKi are linear and that additionallyDi j is
self-adjoint as stated above. It must also be noted that
first-order coupling in time of Eq.~12! has been omitted
Then we consider a set of potential functionsf j for the G j
fields defined through the relation

G j52Kjf j2(
i
Di jf i . ~16!

The requirement on thef j functions in this case is tha
they must be four times differentiable in their arguments
is important to emphasize that since we want to prese
unified scheme for parabolic and hyperbolic transport, c
trary to what happens with the transport equations, we
forced to consider potential functions for the latter which
not reduce to those of parabolic transport in the lim
t j→0. Let the Lagrangian function

L5L~f j ,f j ,t ,f j ,tt ,f j ,xx ,f j ,yy ,f j ,zz!

be given by the expression

L5
1

2(j F2Kjf j2(
i
Di jf j G2. ~17!

The variational problem

A5E E L dV dt5extremum, ~18!

with the functionL given by Eq. ~17!, has the following
Euler-Lagrange conditions for thefk :

]L

]fk
2

]

]t

]L

]fk,t
1

]2

]t2
]L

]fk,tt
1n

]L

]nfk
50. ~19!

If we substitute the expression for the Lagrangian, E
~17!, we obtain Eq.~15! by virtue of Eq.~16!.

One may make the description in terms of the Ham
tonian functionH obtained through the Legendre transfor

H5(
j

f j ,tpj2L, ~20!

where the conjugated momentum to the potentialf j is given
as usual by

pj5
]L

]f j ,t
5H rSi

21G j , parabolic case

2
1

t j
G j , hyperbolic case.

~21!

Let us note that the conjugated momentapj have a clear
physical meaning and that we have translated the descrip
of the nonequilibrium transport processes to a new phys
space whose components are (f j ,pj ). The potential charac
ter of thef j functions is well exposed by Eq.~16!.

In both cases the Hamiltonian of Eq.~20! may be repre-
sented by the expression

H5
1

2(j aj pjpj2(
i

(
j
bj pjD jif i , ~22!
he

t
a
-
re

t

.

-

on
al

where

aj5H ~r21Sj !
2, parabolic case

t j
2 , hyperbolic case,

bj5H r21SjL j , parabolic case

t j , hyperbolic case.

It may be shown@18,29# that a Poisson structure exists fo
the dynamic equations of the conjugated variables for b
parabolic and hyperbolic transport. In fact, if we define
Poisson bracket as

$P,Q%5(
j

dP

df j

dQ

dpj
2(

j

dQ

df j

dP

dpj
, ~23!

whereP andQ depend on the conjugated variables and
functional derivativesd/df j andd/dpj are given by

d

df j
[

]

]f j
2

]

]t

]

]f j ,t
1

]2

]t2
]

]f j ,tt
2“•

]

]¹f j
1n

]

]nf j
,

~24!

d

dpj
[

]

]pj
2

]

]t

]

]pj ,t
1

]2

]t2
]

]pj ,tt
2“•

]

]¹pj
1n

]

]npj
,

~25!

the dynamic equations, Eqs.~18! and ~19!, are particular
cases of the general time evolution equation

P,t5$P,H%, ~26!

with P a function of the conjugated variables and the Ham
tonian given by Eq.~22!.

Particularizing to the hyperbolic case, we can rewrite
dynamic equations, Eqs.~15! and ~16!, in the Hamiltonian
form by considering the modified Hamilton variational pri
ciple

A5E E S (
j

f j ,tpj2H DdV dt5extremum. ~27!

By introducing the momentapj in the Legendre trans
form, Eq. ~20!, and using definition~16! we obtain

H52(
j

1

t j
f j ,tG j2(

j

1

2
G jG j . ~28!

Let us observe that

f j ,t52t j S G j1(
i
Di jf i D , ~29!

and therefore we may write the Hamiltonian as

H5
1

2(j t j
2pjpj2(

i
(
j

t j pjD jif i .

Observe that

H[H~pj ,nf j ,f j ,tt! ~30!
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while Eq. ~27! explicitly becomes

E E dV dtF(
j
pjdf j ,t1(

j
f j ,tdpj2(

j

]H

]pj
dpj

2(
j

]H

]nf j
dnf j2(

j

]H

]f j ,tt
df j ,ttG50,

and finally, after a little algebra we arrive at

E E dV dtF(
j

S f j ,t2
]H

]pj
D dpj

2(
j

S pj ,t1n
]H

]nf j
1

]2

]t2
]H

]f j ,tt
D df j G50.

~31!

Sincedf j anddpj are independent variations Eq.~31! is
satisfied only if

f j ,t5
]H

]pj
, ~32!

pj ,t52n
]H

]nf j
2

]2

]t2
]H

]f j ,tt
. ~33!

In order to illustrate the physical content of this kind
formulation we consider the particular example of hyperbo
transport of heat in a rigid conductor solid where the hea
propagating by conduction through waves at finite spee
The theoretical importance of the problem may be appr
ated in the extensive review of Joseph and Preziosi@14#. In
this case, we take the temperature as the intensive vari
i.e., G5T, and Eq.~1! takes the form of the telegraphe
equation, namely,

T,tt1
1

tq
T,t5c2nT, ~34!

where tq is the relaxation time of the heat flux an
c25K/rCvtq, with K the thermal conductivity andCv the
specific heat.

In the Hamiltonian context the heat conductor is then
scribed by the conjugated field variablesf andp as

T52
1

tq
f ,t1f ,tt2c2nf. ~35!

p52
1

tq
T. ~36!

The dynamic behavior off andp is given by the extre-
mum conditions of the variational principle Eq.~27! or by
the general evolution equations~32! and ~33! with the
Hamiltonian densityH defined as

H~p,f!5
1

2
~tqp!22tqp~f ,tt2c2nf!.

These are the Hamiltonian forms of the hyperbolic d
namic equations of the system. In the next section we re
c
is
s.
i-

le,

-

-
rn

to the general problem and introduce the definition of a fu
tion of the conjugated momentapj , which may well play the
role of a thermodynamic potential. This will allow us to di
cuss the basis to build the thermodynamics of hyperb
transport associated with Eqs.~15! and ~16!.

III. THE THERMODYNAMICS
OF HYPERBOLIC TRANSPORT IN THE FRAMEWORK

OF POTENTIAL FUNCTIONS

Let us then consider the following function of the space
conjugated variables:

P5(
j

1

2
pjpj . ~37!

As we know, its time evolution is given by Eq.~26! with the
Hamiltonian given as in Eq.~22!.

By substituting the expression forP, Eq. ~37!, in Eq. ~26!
we obtain

]

]t S 12(j pj pj D 5(
i , j

L j i ~npi !pj2(
j

t j pj ,ttpj . ~38!

We can rewrite the first term on the right-hand side of t
last equation as

L ji ~npi !pj5L ji“•@~“pi !pj #2L ji“pi•“pj , ~39!

while the second term is written as

t j pj ,ttpj5t j
]

]t
~pj ,tpj !2t j pj ,tpj ,t . ~40!

Introducing Eqs.~39! and ~40! in Eq. ~38! we arrive at

]

]t S 12(j pj pj1(
j

t j pj ,tpj D 1“•F(
i , j

pjL ji“pi G
5(

j
t j pj ,tpj ,t2(

i , j
“pi•L ji“pj . ~41!

Let us note that this equation has the form of a bala
equation provided we identify

F5
1

2(j pj pj1(
j

t j pj ,tpj , ~42!

JF5(
i , j

pjL ji“pi , ~43!

sF5(
j

t j pj ,tpj ,t2(
i , j

“pi•L ji“pj , ~44!

whereJF andsF are the flux and production of the thermo
dynamic functionF, respectively. As a matter of fact, th
structure of the thermodynamic functionF reveals that it
consists of two different kinds of terms. The first one on t
right hand side is related to the near equilibrium entropy
was shown by Ma´rkus and Gamba´r @18#. The second term is
a nonequilibrium contribution which vanishes in princip
whent j tends to zero.
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It is worthwhile to mention that the production term, E
~44!, is an invariant under global phase transformations if
reciprocity relations between the transport coefficients
satisfied. In fact, if one considers the global phase trans
mation on the fieldsf j @18,30#,

f j85(
l

d j lf l2(
l

upI ~ l , !Tjl
pf l , ~45!

where the infinitesimal parametersup do not depend on the
spatial coordinates,Tjl

p are the transformation generators a
the order operatorI ( l , ! is defined as
de
t
fo

on
i
a

o
n
ls
y-

od
s
s
f
n
in
le

q

e
e
r-

I ~ l ,m!51, ~46!

if the fieldf j8 is multiplied by the left by the fieldf i8 @which
is assumed to depend on thefm according to Eq.~45!#, and

I ~ l ,m!521, ~47!

if the field f j8 is multiplied by the right by the fieldf i8
@which is assumed to depend on thefm according to Eq.
~45!#, then the Lagrangian function transforms as
L85E dV
1

2(j F(
l

d j l

]2f l

]t2
2(

p,l
upI ~ l , !Tjl

p ]2f l

]t2
2(

l

1

t j
d j l

]f l

]t
1(

p,l

1

t j
upI ~ l , !Tjl

p ]f l

]t

2(
i
L j i S (

k
d iknfk2(

q,k
uqI ~k, !Tik

q nfkD GF(
m

d jm

]2fm

]t2
2(

r ,m
u r I ~m, !Tjm

r ]2fm

]t2
2(

m

1

t j
d jm

]fm

]t

1(
r ,m

1

t j
u r I ~m, !Tjm

r ]fm

]t
2(

n
L jnS (

g
dngnfg2(

s,g
usI ~g, !Tng

s nfgD G . ~48!
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We may then show by using the properties of the or
operator and taking up to first order in theup parameters tha
the Langrangian is invariant under the global phase trans
mation

L85L. ~49!

In a similar fashion and after a cumbersome algebra
may show that the production term of the thermodynam
function F is an invariant under global phase transform
tions, Eq.~45!, if the transport coefficientsLi j satisfy Onsag-
er’s reciprocity relations in the form

Li j5L ji . ~50!

To close this section a fact which reveals another side
the profound role that the Onsager’s reciprocity relatio
have in the domains of irreversible thermodynamics is a
mentioned~a review on reciprocity in extended thermod
namics may be found in the work of Nettleton@31#!. Let us
consider again a system described by the set of therm
namic propertiesG j , which has a set of potential function
f j defined through Eq.~16!. The Euler-Lagrange equation
of the variational problem, Eq.~18!, show the presence o
non-self-adjoint differential operators which might be co
sidered a contradiction with the fact that only self-adjo
operators admit a derivation from a variational princip
Some of the non-self-adjoint operators in Eq.~18! arefk,ttt

or nfk,t . Observe, however, that if Onsager’s relations, E
r

r-

e
c
-

f
s
o

y-

-
t
.

.

~50!, are satisfied and we changej→ i in the second term
within the last bracket on the left-hand side of Eq.~18!, we
obtain

1

tk

]

]t S 2
1

tk
fk,tD1

]2

]t2 S fk,tt2
Lki
t i

nf i D
2(

j

L jk

tk
nS f j ,tt2

L ji

t i
nf i D50. ~51!

In this last equation for the potential functionsfk all of
the differential operators are of the self-adjoint kind. Mor
over, we see that the conditions for the existence of va
tional principles for a set of differential equations as e
pressed by Finlayson@5#, Nyı́ri @17#, and Ichiyanagi@32# are
equivalent statements@6#.

In the next section we develop a mesoscopic descrip
of hyperbolic transport focusing on the probability associa
with paths in the phase space within which we have deri
the dynamic equations as the Euler-Lagrange conditions
classical variational principle.

IV. THE PATH INTEGRAL FORMULATION
FOR TRANSPORT PHENOMENA

FAR FROM EQUILIBRIUM

To simplify we assume a system described by only o
thermodynamic propertyG. The dynamical equation forG
~free of sources! is

~D2K !G50. ~52!

We change the description to a phase space of conjug
variables (f,p) defined through the relation
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~D1K !f52G, ~53!

and Eq.~21!.
The dynamical equations for the conjugated variables

written in the Hamiltonian form as

f ,t5
]H

]p
, ~54!

p,t52D
]H

]Df
, ~55!

where the Hamiltonian functionH is given by Eq.~22! and
as before

D5H Ln, parabolic case

c2n2
]2

]t2
, hyperbolic case,

with c25L/t r the signal transmission velocity andt r the
characteristic time constant of the system. Equations~54!
and ~55! are equivalent to equations

~D1K !f5bp, ~56!

~D2K !p50, ~57!

where the constantb is

b5H r21SL, parabolic case

t r , hyperbolic case.

With the above we have translated the description of
system to a space enlarged with the potentialf since the
conjugated momentum becomes essentially the therm
namic propertyG. It is well known that the solution of Eq
~56! diverges fort→`. This is physically correct since th
description of the equilibrium state is completely defined
terms ofG, but the nonequilibrium states require a new va
able which is the potential functionf. Thenf must not be
defined for the asymptotic limitt→`. In this way, the physi-
cal interpretation off cannot be found in equilibrium. A
this point we just know that its partial derivatives are rela
to the thermodynamic properties of the system through
~56! which is at the same time the grounds for their physi
meaning.

To introduce Eqs.~56! and ~57! within the context of
stochastic processes we consider the potential functionf and
momentump as intrinsically fluctuating variables of the sy
tem. The origin of this property must be found in the fact th
the system is out of equilibrium and therefore uncontrolla
inner processes exist which cause random microscopic
pacts from internal subsystems. We remark that this assu
tion does not imply the necessity of new nonequilibriu
variables for the system, but its thermodynamic state can
be described through the local equilibrium properties of
conjugated space.

Our problem is then to define the probability field asso
ated with the paths of the system in the conjugated sp
(f,p). In order to do this, we consider a collection of rep
cas of the original system, each one prepared with the s
re

e

y-

-

d
q.
l

t
e
-
p-

ill
e

-
ce

e

initial conditions determined in terms of the conjugated va
ables. This physical ensemble@33# will be described in the
‘‘phase space’’ of the conjugated variablesf andp and the
definition of the probability field of paths must be in acco
dance with the fact that the actionA must be a maximum for
the path obtained as the solution of Eqs.~56! and~57!, since
it represents the most probable behavior of the system
what follows we develop the adopted point of view in term
of the physical ensemble to describe the influence of fluct
tions in the temporal behavior of the system.

Let us circumvent the question of how to modify th
mean dynamic equations to introduce fluctuations and c
sider then a thermodynamic system described by two co
gated variablesf and p which are intrinsically stochastic
properties, due to the underlying molecular processes
mentioned above and whose time evolution is described
the average by Eqs.~56! and~57!. We ask then for the prob
ability that the system follows a given path between tw
given thermodynamic states (f,p)and (f8,p8). The pres-
ence of fluctuations implies that this path is not unique
such a way that we must assign a probability to each adm
sible path between the same two thermodynamic states s
rated by a times. As usual, we divide the intervals in small
time intervalst which are smaller than the hydrodynam
time scale but bigger than the kinetic time scale.

Let us define the transition probability between states
the conditional probability that the system will be in the sta
f8 at time t5t given that at timet50 it was in the state
f,

Pt~f8/f!5
exp@2~1/k!At~f8/f!#]p/]f8

*dp exp@2~1/k!At~f,p!#
, ~58!

where the action has the form

At~f8/f!5E
0

t

dt~pf ,t2H !

5E
0

t

dtS pf ,t2
1

2
ap21bpDf D , ~59!

with

a5H ~r21S!2, parabolic case

t r
2 , hyperbolic case,

and we have to choosef, f8, and t as independent vari
ables. In this way,]p/]f8 from Eq. ~58! is the Jacobian of
the transformation

p5p~f,f8,t!. ~60!

Expression~58! is understood as the probability that
fluctuation carries the system from the initial statef at time
t50 to the final statef8 during the time intervalt. This
probability is normalized through the factor

1Y E dp expF2S 1kDAt~f,p!G
in Eq. ~58!.



ll
a

at

on
eir
rob-
p-
on
nly
the

c-

ion
ther
e a

lge-
lic

e

or
fies
he
ns
em.
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In order to compute the transition probability for sma
time intervalst we expand the conjugated variables in
Taylor’s series

f~ t !5f1f ,tt1
1

2
f ,ttt

21•••, ~61!

p~ t !5p1p,tt1
1

2
p,ttt

21•••, ~62!

where the coefficients are valued att050. We now consider
small t and by using the expansion~61! write the transfor-
mation ~60! up to the lowest order int. We obtain

p5
1

t
a* ~f82f!1b*Df, ~63!

where

a*5H ~rS21!2, parabolic case

1

t r
2t
, hyperbolic case,

b*5H 2rS21L, parabolic case

1

t r
, hyperbolic case.

and therefore the Jacobian becomes

]p

]f8
5H 1

t
~rS21!2, parabolic case

1

t r
2t
, hyperbolic case.

~64!

Sincet is small the system does not appreciably devi
from the mean path and we may then use Eqs.~56! and~63!
in the action, Eq.~59!. The result is

At~f8,f!5
1

2
a* ~f82f!22b*Df~f82f!

1
1

2
c* t~Df!2, ~65!

with

c*5H 25L2, parabolic case

1, hyperbolic case.

Finally, the normalization factor is given by

N5A a*

2kp
.

e

By substituting in the transition probability, Eq.~58!, we
obtain

Pt~f8/f!5A a*

2kp
expH 2

1

k F12 a* ~f82f!2

2b*Df~f82f!1
1

2
c* t~Df!2G J . ~66!

It must be noticed from this last result that the transiti
probability is determined by potential differences and th
derivatives. Therefore we assure the existence of this p
ability field for all times. In this sense the nonbounding pro
erty of the potential function does not affect the transiti
probability. The equilibrium state is then characterized o
by the limiting value of the conjugated momentum, since
potential function is not defined fort→`. This is consistent
with the fact that the equilibrium state is completely chara
terized by the thermodynamic propertyG.

We now show that the transition probability, Eq.~66!,
satisfies the Chapman-Kolmogorov equation@34#. First we
approximate this probability as

Pt~f8/f!5A a*

2kp
expH 2

1

2k
c* t~Df!2J

3expH 2
a*

2k
~f82f!21

b*

k
Df~f82f!J ,

~67!

whereDf is the value ofDf at the point12(f81f). This
choice is motivated by our desire to incorporate informat
on the most probable trajectory. In the absence of any o
physical insight as to what to choose this seems to b
reasonable guess.

Explicitly the Chapman-Kolmogorov equation is

E df8Pt9~f9/f8!Pt8~f8/f!5Pt~f9/f!. ~68!

By direct substitution of Eq.~67! in Eq. ~68! it may be
seen that this last equation is satisfied identically. The a
bra is briefly sketched in the Appendix for the hyperbo
case.

For the finite lapses we may find an expression for th
transition probability between the statesf andf8 by using
the Chapman-Kolmogorov equation, Eq.~68!. If we divide
the intervals in N subintervalst we have then that

Ps~f8/f!5E df1•••dfN21Pt~f8/fN21!

3Pt~fN21 /fN22!•••Pt~f1 /f!, ~69!

wheret5s/N.
With the above result, we know that either parabolic

hyperbolic transport is a stochastic process which satis
the Chapman-Kolmogorov equation in the framework of t
new physical fields represented by the potential functio
associated with the thermodynamic properties of the syst



w
x

a

m

is

a
g
re

e
ive

e

w
,
.

ph
e
ca
ia
p
im
th

m

dy-
ealt
gent

es

y-
ian
ni-
nal
ics

ility
set

po-
s.

o-
t to
er-
nd

ion
t of
to

es

ot
e-
ysi-
ort
n-
u-
ial
e
ge
-
t by
on-
ith
-
ich
nd
,
han
n

per-
nd
n
of

lic
stem

s.
o-

an-
his

55 5041FLUCTUATIONS FAR FROM EQUILIBRIUM: . . .
Is it a Markov process? The answer is not necessarily and
will give some additional comments on this point in the ne
section.

For the parabolic case we may, however, go on. The tr
sition probability Eq.~67! is written explicitly as

Pt~f8/f!5A~rS21!2

2kpt
expF2

5

2

tL2

k
~nf!2G

3expH 2
1

2kt
~rS21!2~f82f!2

1
rS21

k
Lnf~f82f!J . ~70!

The first and second moments of this probability beco

M15E df8nfPt~f8/f!

52
Lt

rS21nfexpF2
2tL2

k
~nf!2G , ~71!

M25E df8~nf!2Pt~f8/f!

5
kt

~rS21!2
expF2

2tL2

k
~nf!2G .

~72!

The remaining moments vanish at ordert. Therefore we
have a Gaussian probability distribution. With moments~71!
and ~72!, the Fokker-Planck equation for the probability
then that of a diffusive process,

]P~f,t !

]t
52

]

]f
~M1P!1

1

2

]2

]f2 ~M2P!, ~73!

with positiveM2. As may be seen, parabolic transport is
stochastic diffusion. The essentials of the results of Onsa
and Machlup for near equilibrium systems are therefore
covered here.

In fact, analogous results may be obtained for the hyp
bolic case, namely, the first and second moments der
from the probability Eq.~67! are ordert, while higher mo-
ments vanish at ordert. So, the statistical properties of th
stochastic process associated to the potentialf turn out to be
identical for both parabolic and hyperbolic transport. Ho
ever, we have to stress again that, as mentioned in Sec. II
potential functions themselves are different in each case

V. DISCUSSION

We have derived a mesoscopic scheme for transport
nomena of intrinsically fluctuating systems based on the
istence of a classical variational principle for the dynami
equations which include non-self-adjoint linear different
operators. This scheme involves aged systems as well as
cesses occurring in times of the order of the relaxation t
of the fluxes. This is the main difference of this work wi
respect to the ones of Onsager and Machlup@2# and Grabert
and Green@3# which describe aged homogeneous syste
e
t

n-

e

er
-

r-
d

-
the

e-
x-
l
l
ro-
e

s,

where the fluxes are the time derivatives of the thermo
namic properties. The stochastic nature of the systems d
with by these authors arises from an external stochastic a
which confers the same property to the system.

The virtues of a description for irreversible process
based on path integrals are well known@4#. Among them we
remark that it gives a rationale of nonequilibrium thermod
namics and that in the near equilibrium case the Lagrang
is related to the entropy production and the principle of mi
mum entropy production may be derived from the variatio
principle. The technique used here to describe the dynam
of nonequilibrium systems is also based on the probab
density of a complete path in the space spanned by a new
of thermodynamic properties of the system: the so-called
tential functions and the set of local equilibrium propertie
The variational scheme is, as has been shown@2–4#, the
heart of the path integral description of irreversible pr
cesses. For the linear case this description is equivalen
that made in terms of the Langevin equation or the Fokk
Planck equation of the works of Onsager and Machlup a
Grabert and Green.

The states far from equilibrium require a characterizat
based on the conserved densities and an additional se
physical fields: the potential functions. It is worthwhile
remark the physical behavior of the potential functionf. As
was mentioned above, this potential diverges for large tim
while G ~and therefore the conjugated momentump) ap-
proaches asymptotically to its equilibrium value. This is n
a strange situation in classical field theory. In fact this b
havior was considered as a necessary condition for the ph
cal consistency of the formalism. The hyperbolic transp
equations contain the first time derivative which is a no
self-adjoint operator. Therefore a classical variational form
lation does not exist in principle for them. The potent
function method circumvents this difficulty. The point w
wish to make is that if one observes the Euler-Lagran
equation for the potentialf one still finds some non-self
adjoint differential operators. It has been shown here tha
resorting to Onsager’s reciprocity relations the terms c
taining this kind of operators vanish, leaving only those w
self-adjoint operators. In connection with this point, it is im
portant to emphasize the role of Onsager’s reciprocity wh
is identical to the one it plays in the original Landau a
Lifshitz Lagrangian formulation@22#. It must be stressed
however, that the present formulation is more general t
that of Landau and Lifshitz since it allows for the inclusio
of spatial inhomogeneities.

The establishment of a mesoscopic approach to hy
bolic transport was also dealt with by Olivares-Robles a
Garcı́a-Colı́n @35#. The main result of the preceding sectio
concerning hyperbolic transport coincides with that
Olivares-Robles and Garcı´a-Colı́n, who, starting from the
Chapman-Kolmogorov equation, obtained the hyperbo
equations as the average dynamic equations of the sy
under the only assumption that the intervalt between events
be finite. This interval of timet has the same meaning for u
The unavoidable question is then if processes with therm
dynamic memory may be described with the Chapm
Kolmogorov equation. Some affirmative answers to t
question have been given@36#, but no doubt this is still an
open problem.
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The formal aspects of the path integral based formulati
for nonequilibrium processes~but still near equilibrium!
have recently been surpassed, turning them into an effec
computational tool@37#. Our results may well be the ground
for doing the same in the case of processes far from equ
rium.
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APPENDIX

On the left hand side of Eq.~68! we have

E df8Pt9~f9/f8!Pt8~f8/f!5A 1

2kpt r
2t
A t

2kpt r
2t9t8

expH2 1

2k
t~hf!2J

3Edf8expH2 1

2ktr
2t9

~f92f8!21
1

ktr
hf~f92f8!J

3expH2 1

2ktr
2t8

~f82f!21
1

ktr
hf~f82f!J.

The terms that depend on the intermediate statef8 are

expH 2
1

2kt r
2 F 1t9

f921
1

t8
f2G J E df8expH 2

1

2kt r
2 F t

t9t8
f8222S 1t9

f91
1

t8
f Df8G J

5expH 2
1

2kt r
2 F 1t9

f921
1

t8
f2G JA2kpt r

2t9t8

t
expH t9t8

2kt r
2t S 1

t92
f921

2

t9t8
f9f1

1

t82
f2D J

5A2kpt r
2t9t8

t
expH 1

2kt r
2t

~f92f!2J .
Then, by substituting this last expression in the above equation we arrive at

E df8Pt9~f9/f8!Pt8~f8/f!5A 1

2kpt r
2t
expH 2

1

2k
t~hf!2J expH 2

1

2kt r
2t

~f92f!21
1

kt r
hf~f92f!J 5Pt~f9/f8!.
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